アナログ/デジタル混在

電子回路シミュレータ

Micro-Cap 7

ver. 0.9a

目次

1. 回歸	格シミュレータ Micro-Cap 7 とは	
1.1.	回路シミュレータとは	4
1.2.	Micro-Cap 7 の特徴	4
1.3.	Micro-Cap の略歴	5
1.4.	SPICE の基礎知識	5
Ĺţ	部品モデル」とは	5
1.5.	Micro-Cap 7 評価版について	6
製品	品版との主な相違点	6
評任	面版の動作条件	6
評任	面版のインストール方法	6
2. 回题	格図の作成方法	7
2.1.	回路図エディタの操作の基本	7
部目	品を配置するには	7
部目	品どうしを配線するには	7
回日	路を編集・修正するには	7
2.2.	値の入力について	8
2.3.	その他 便利な機能	8
3. 基本	本的な解析	9
3.1.	ダイナミック DC 解析	9
٢(Operating Point」とは	9
٦)	ノード」とは	9
3.2.	3 つの基本解析モード	10
3.3.	Transient 解析:回路に時間波形を入力してみる	10
力-	ーソルモード	12
性能	能関数	13
3.4.	AC 解析: 周波数応答をみる	14
3.5.	DC 解析: DC カーブを見る	15
4 첫	歩進んだ解析機能	17
4.1.	ステッピング	17
4.2.	性能プロット	18
5. サン	ンプル回路集	19
5.1.	回路図ファイル(Schematic ファイル、拡張子.cir)	19
5.2.	SPICE ファイル	23

6. 参考	考文献	24
6.1.	Micro-Cap 7 の使用方法に関するもの	24
製品	品に付属するもの	24
現在	至準備中のもの	24
市則	反されているもの	24
6.2.	半導体部品のモデリング	24
6.3.	その他	24

改訂履歴:

ver. 0.9a (2002/02/12): PDF 変換時の文字化け修正。

ver. 0.9 (2002/02/07):

「サンプル回路集」「参考文献」の章を追加。「FAQ」を他文書へ移動。

1. 回路シミュレータ Micro-Cap 7 とは

1.1. 回路シミュレータとは

- 回路シミュレータ = 電子回路の動作を計算によって模擬するソフトウェア
 ↓
- パーソナルコンピュータ上に実現された「仮想的な実験環境」
 - アイデアが正しいかどうか、確認しながら設計することができる。
 - 実際の基板を試作する前に、回路の動作を検証できる。
- 1.2. Micro-Cap 7 の特徴

習得しやすいユーザ・インターフェイス

・ Windows の操作体系で回路編集が出来る。

SPICE 互換

- SPICEの部品モデル/シミュレーションテクニック等、ノウハウを活用できる。
 統合化された論理シミュレータ
- アナログ/デジタル混在のシミュレーションが可能。

強化された部品ライブラリ(15,000 種類以上)

強力なプロット機能

・ 四則演算や各種関数に加え、微分・積分等の演算子が使用可能

高度な解析機能を標準搭載

・ ステッピング等の複数回解析機能を搭載

プロット後の波形解析機能

・ 出力波形の FFT 解析、性能解析等

1.3. Micro-Cap の略歴

開発元:米国 Spectrum Software 社

最初のリリース: 1982 年 Micro-Cap (MC1)

- Apple II および IBM PC に対応。
- ・ 当初から、パソコン用シミュレータとしては画期的な、回路図入力方式を採用。
 ・

最新バージョン: 2001 年 9 月 Micro-Cap 7 (MC7)

- ・ Windows 95/98/Me/NT4.0/2000 に対応。
- 新機能:オプティマイザ、スミスチャートプロット、etc.
- ユーザインタフェイスの強化。

1.4. SPICE の基礎知識

- 1970年代初頭カリフォルニア大学バークレー校にて研究の一環として開発された<u>ア</u> <u>ナログ</u>回路シミュレータ。「トランジスタレベル」で回路をシミュレートするため、計 算力を要するが、モデル次第で比較的高精度な結果を出力可能。
- SPICE = Simulation Program with Integrated Circuit Emphasis
 「IC に重点を置いたシミュレーションプログラム」が名称の由来。当初は、IC の性能
 を製造前に評価することが目的だった。

 ヘロゴい、汎用性をなった。
 ヘロゴい、汎用性をなった。
 - ⇒ 今日では、汎用的なアナログ電子回路シミュレータとして利用されている。
- ・ オリジナルの SPICE では、基本的に回路はテキスト形式で入力。
 - ⇒ Micro-Cap では、回路図入力をサポート。
- ・ 半導体メーカ各社から、SPICE でシミュレーションを行なうため部品モデルが供給されている。

「部品モデル」とは

電子部品をパラメータ化し、シミュレータで利用できる形式にしたものを「部品モデル」 と呼んでいます。Micro-Capでは、半導体メーカが Web 等で公開している、SPICE 形式の 部品モデルを利用することができます。

1.5. Micro-Cap 7 評価版について

評価版は Micro-Cap の紹介用に、無償で配布されているバージョンです。部品パラメータ の抽出に利用する MODEL プログラムは含まれませんが、回路図の作成/保存/印刷/解 析 等、基本的な機能については支障なく利用できます。

製品版との主な相違点

回路規模:約100ノード程度まで解析できます。

解析速度:小さな回路では製品版と同等ですが、回路規模が大きくなると、製品版の4倍 程度の時間がかかることがあります。

機能制限:オプティマイズ/フィルタデザイナ/3D プロット/PCB 機能/性能プロット/ 複数パラメータのステッピングなど、一部機能の利用に制限があります。

部品ライブラリ:製品版で利用できる 15,000 種類の部品ライブラリのうち、一部の部品 のみ利用可能です。(利用できない部品は、メニューの中でグレイ表示されています。)

評価版の動作条件

- Pentium II 以降のプロセッサ
- ・ システムメモリ 64MB 以上
- HDD 空き容量 100MB 以上推奨
- Windows 95/NT4.0 Service Pack 3 もしくはその後継バージョン

評価版のインストール方法

- Micro-Cap 7 評価版のインストール CD を CD-ROM ドライブに挿入するとセットアッ ププログラムが起動します。しばらく待っても起動しない場合は、手動で setup.exe を 実行してください。
- 2) セットアッププログラムの指示に従って、インストールを行ってください。

2. 回路図の作成方法

Micro-Cap を最初に起動すると、回路図エディタの画面が現れます。最初に、以下のよう な簡単な回路図を作成してみます。

2.1. 回路図エディタの操作の基本

部品を配置するには

- 2. 回路図の白い部分をクリックすると、部品が配置されます。
- 3. 必要に応じて、属性ダイアログが表示されるので、値を入力してください。

部品どうしを配線するには

- 1. ツールバーのワイヤモードボタンこをクリックします。
- 2. マウスでドラッグすると、ワイヤが描画されます。

回路を編集・修正するには

- 1. ツールバーの選択モードボタントをクリックします。
- 2. 次のような操作が実行できます。
 - ・ 部品を**ダブルクリック**すると、部品の属性を変更できます。
 - ・ 部品をドラッグすると、部品を移動できます。
 - ・ 部品をドラッグしながら右クリックすると、部品の向きを8通りに変更できます。
 - 部品をクリックすると、部品が「選択」されます。また、領域指定(何もないところからドラッグ)や、Shift+クリックを行うことにより、複数の部品をまとめて選択することができます。選択された部品は、コピー(Ctrl+C)/カット(Ctrl+X)/ペースト(Ctrl+V)の対象となります。
 - ・ Ctrl+ドラッグによっても、部品をコピーできます。

2.2. 値の入力について

以下の3通りの表現方法が利用できます。値を入力する際、V,A,ohm 等の単位をつける必要はありません。

- ・ 普通の実数
 1.0, 6, 12.7 など
- ・ 浮動小数点
 1E-12, 1E+3, -7.832e-8, 100e9 など
- ・ べき乗を略記 1f, 1n, 1u, 1<u>m</u>, 1, 1k, 1<u>meg</u>, 1g, 1t など

※ Micro-Cap では基本的に<u>大文字/小文字は区別されません</u>。そのため「m」「M」はいず れも「ミリ」を表します。「メガ」を表すには、「meg」「Meg」等を使用してください。

2.3. その他 便利な機能

- Helpモードボタン?を押して、部品をクリックすると、部品の設定方法のヘルプ(英文)が表示されます。
- InfoモードボタンIIを押して、部品をクリックすると、部品の定義位置へジャンプします。

基本的な解析

3.1. ダイナミック DC 解析

本格的な解析を行う前に、回路に間違いがないか確認できると便利です。ダイナミック DC 解析機能を使用すると、手軽に DC 的な電圧/電流値を確認することが出来ます。

[Analysis]メニューの[Dynamic DC]をチェックすると、回路の「Operating Point」が自動 計算されるようになります。それぞれの表示は、以下のボタンで on/off を切り替えられま す。

「Operating Point」とは

回路の定常状態における電圧、電流、etc.を Operating Point といいます。動作点、バイア ス点とも言います。Operating Point の計算においては、コンデンサは開放、インダクタは 短絡として扱われます。

「ノード」とは

回路内の中で、同じ配線によって互いに接続されている部分を、ノードといいます。回路 中の電圧値は、ノードごとに保持されます。これをノード電圧といいます。上の回路では、 グラウンドを入れて3つのノードがあります。

ノード番号

ノード名

工ボタンを使用して配線上に短いテキストを置きます。

3.2. 3つの基本解析モード

以下の3つがMicro-Capの基本的な解析モードとして特に重要です。

- Transient 解析 時間領域波形のプロット ≒ オシロスコープ
- AC 解析 周波数特性のプロット ≒ スペクトラム アナライザ
- DC 解析 DC 特性のプロット ≒ カーブ トレーサ

3.3. Transient 解析:回路に時間波形を入力してみる

観測対象が時間領域の事象である場合は、Transient 解析を使用します。ここでは、以下の回路を使用して、コンデンサの充放電を観測してみます。

パルス源 V1 の属性ダイアログでは、MODEL=MyPulse として[Edit]ボタンを押し、以下 のような値を入力します。

Pulse So	urce	×
Name	MODEL 🔽 Display 🔽 Display Pin Names	
Value	MyPulse	
PART: MODE PACK	=V1 L=MyPulse AGE=	IMPULSE MYPULSE PULSE SAWTOOTH SQUARE TRIANGLE
<u>0</u>	K <u>C</u> ancel <u>Font Add Delete H</u> elp Source:C:¥WINDOWS¥テ*スクトップ¥RC.CIR	Edit
	VZERO 0 VONE 10 P2 1.1U P3 8U P5 10U	P1 1U A
		•
Manc	atory: <model name=""></model>	

観測したいポイントには、Text モード([T]アイコン)を使用して「in」「out」等のノード名をつけます。

[Analysis]メニューの[Transient Analysis]を選択し、	以下のように設定します。
--	--------------

🌃 Transient Analysis Limits					×
Run <u>A</u> dd	<u>D</u> e le te	Expand Ste	pping	<u>H</u> elp.,	
Time Range	20u		<u>R</u> un Options	Normal	
Maximum Time Step	þ		<u>S</u> tate Variables	Zero 💌	
Number of Points	51		🔽 Operating Point		
Temperature Linear 💌	27		🗖 Operating Point	Only	
			🗖 Auto Scale Rang	jes	
P X	Expression	Y	Expression	X Range	Y Range
		(IN)		2e-005	16,-4
		(OUT)		2e-005	10

[Run]ボタンを押すと以下のようにグラフがプロットされます。

カーソルモード

出力波形について 10% ⇒ 90%の立上り時間を測定してみましょう。

ツールバーのSMボタンを押すと、カーソルモードとなります。ここでは、カーソル位置にお ける数値や2つのカーソル間の差や傾きを読み取ることができます。

カーソルは Left と Right の 2 つが用意されており、それぞれ左右のマウスボタンによって 移動できます。

Left カーソルにおいて T = 1.17us、Right カーソルにおいて T = 3.35us となるようにカー ソルを移動させると、両者の差(Delta) ΔT = 2.18us より、10% \Rightarrow 90%の立上り時間が 2.18us であることがわかります。

性能関数

Micro-Cap には、解析波形をもとに、性能に関する特性値を算出する機能が搭載されてい ます。これを性能関数(Performance Function)といいます。これを利用すると、立上り時間 などを簡単に求めることができます。

ツールバーの 「ボタンを押すと、[Go To Performance]ダイアログを表示されます。 適切な 値をセットし、[Go To]ボタンを押すと、自動的にカーソルが移動し、 値が表示されます。

3.4. AC 解析: 周波数応答をみる

周波数特性を観測するには、AC 解析を使用します。

 $\begin{array}{ccc} MyPulser & 1n \\ V1 & R1 \\ & 1k \end{array}$

AC 解析では、パルス源は、振幅 1、位相 0 のサイン波として扱われます。 [Analysis]メニューの[AC Analysis]を選択し、以下のような設定で解析してみます。

作成した回路は、あとでまた使用するので RC.CIR というファイル名で保存しておきます。

3.5. DC 解析: DC カーブを見る

半導体の I-V 曲線等、時間/周波数に依存しない DC 的な特性を調べるには、DC 解析を使用します。ここでは、トランジスタの I-V カーブを解析してみます。

[Analog Primitives]-[Waveform Sources]の[V]および[I]を利用して以下のような回路を作 成します。

² ● Ib	Q1 VALUE=5. 2N2222 Vces
VALUE=10u	

🔟 DC Analysis Limits			x
Run Add Delete	Expand Stepping Properties	<u>H</u> elp	
Method Name Variable 1 Linear 💽 VCE	Range		_
Variable 2 Linear 💽 IB	▼ 10u,2u,2u		_
Temperature Method Range Linear 27 Run Options Normal 2 GAuto	Number of Points	_Maximum Chan, ∫1	
P X Expression	Y Expression	X Range	Y Range
1 V(Vce)	IC(Q1)	10	2m,0

4. 一歩進んだ解析機能

4.1. ステッピング

ステッピング機能を利用すると、部品の値等を変化させながら、複数回の解析を繰り返し 行うことができます。

RC.CIR の[Transient Analysis Limits]において[Stepping...]ボタンを押して設定します。

pping					
Parameter 1	-		Parameter 2 -		
<u>S</u> tep What	C1	<u> </u>	<u>S</u> tep What		
	Value	_		Value	
Erom	0.2n		Erom		
Τo	1n		Το		
Step <u>V</u> alue	0.1 n		Step <u>V</u> alue		
Step It	Method	-Parameter Type	Step It	Method Pa	rameter Type — Commonant
	Cing	C Model	© Nn	Cing C	Model
	C List	C Symbolic		C List C:	Symbolic
Change ——					
) Simultane	ous 💿 Nested	<u> <u> </u></u>	<u>Cancel</u>	<u> </u>	<u>H</u> elp
00 P2		P3			
00					
»o					
)0 P1		P4 1	25		
00 0.00u v(IN)	4.00u	8.00u	12.00u	16.00u	20.00u

4.2. 性能プロット

ステッピングした結果を評価するのに、性能関数を使用することができます。

[Transient] – [Performance Windows] – [Add Performance Window...]を選択して、立上 り時間をグラフにしてみます。

Properties	X
Plot Format Colors, Fonts, and Lines Tool Bar	
Plots Title Rise_Time(\(\OUT))1,1,1,1,9) vs C1.Value X Axis C1.Value Vhat To Plot Function Expression Boolean N Low Rise_Time Xdd	I Auto
OK キャンセル	適用(A) ヘルプ

5. サンプル回路集

C:¥MC7¥DATA ディレクトリには、様々な回路の解析例が収録されています。実際に解析 してみることをお勧めします。

5.1. 回路図ファイル(Schematic ファイル、拡張子.cir)

(ファイル名)	(内容)
283	Use of digital primitives to model a 283 logic unit
381	Use of digital primitives to model a 381 logic unit
3D1	Use of 3D plots
3D2	Use of 3D plots
555ASTAB	Use of the 555 macro in an astable application
555MONO	Use of the 555 macro in a monostable application
A_BOOST_CM_OL	Boost current mode averaged model open loop plot
A_BOOST_CM_ZOU	JT Boost current mode averaged model Zout plot
A_BOOST_VM	Boost voltage mode averaged model open loop plot
A_BUCK_CM	Buck current mode averaged model open loop plot
A_BUCK_VM	Buck voltage mode averaged model open loop plot
A_BUCKBOOST	Buckboost current mode averaged model open loop plot
A_FLYBACK	Flyback voltage mode averaged model open loop plot
A_FORWARD	Forward voltage mode averaged model open loop plot
A_NCP	NCP1200 Converter
A_RESO_DC	Resonant converter DC analysis
A_RESO_OL	Resonant converter averaged model open loop plot
A_SEPIC	Single Ended Primary Inductance Converter
AD16	Use of the AtoD and DtoA elements
ANIM	Use of the animation components
ANIM3	Use of the animation components
BAX	Steps a resistor to model a pot element
BPFILT	Analysis of a bandpass filter
BUTTERN	Use of a Laplace source to represent a Butterworth filter
CARLO	Monte Carlo routines in transient and AC analysis
CARLO2	Monte Carlo routines in DC analysis
CARLO4	Monte Carlo routines in transient and AC analysis
СНОКЕ	Analysis of a diode choke circuit
CMOS	MOSFETs in an inverter configuration

COLPITTS	Analysis of a colpitts oscillator
CONVERTER3	Three-phase converter with zero-crossing detectors
CORE	Use of the core model and plotting a BH curve
CORE3	Use of the nonlinear core model with multiple inductors
COUNTER	Analysis of a binary counter
COUNTER2	Analysis of a BCD counter
CROSSOVR	Analysis of a passive 1kHz cross-over network
CURVES	BJT IV curves
DECODER	Use of a digital subcircuit as a decoder
DIFFAMP	Analysis of a differential amplifier
DIG_POWER	How to change the digital power supplies
DIRA	Use of the operators d, avg, sum, and rms
ECLGATE	Analysis of an analog equivalent ECL gate
F1	Use of the VCO macro
F2	Use of a nonlinear function source
F3	Use of a nonlinear function source
F4	Use of the Triode macro
FFT1	Use of DSP and complex operators
FFT3	Use of cross-correlation and auto-correlation operators
FFT4	Use of the IFT operator
FFT5	Use of the auto-correlation operator
FFT7	Use of the DSP dialog box to eliminate startup transients
FILTER	Analysis of a Chebyshev filter and use of the Noise macro
FSK2	Use of the FSK modulator macro
FSTIM8	Use of the file stimulus component
GASFET	Use of the GaAsFET component
GILBERT	Analysis of a Gilbert multiplier
GUMMEL	Use of the Gummel-Poon SPICE BJT model
GYRTEST	Use of the gyrator macro
IVBJT	Use of DC analysis to plot the IV curves of a BJT
L1	Use of a Laplace source to model a passive network
L2	Use of Laplace sources to model transmission lines
L3	Use of a Laplace source to model a Butterworth filter
LM117REG	Using the LM117 model
LTRA3	Use of the lossy transmission line
MIXED	Analysis of a mixed-mode circuit

MIXED1	Analysis of a mixed-mode circuit
MIXED4	Analysis of a mixed-mode circuit
MODELRLC	Use of temperature stepping
MOSCAPS	Plotting of MOSFET capacitance curves
MOSDIFF	Analysis of a MOSFET differential amplifier
NOISEBJT	Plotting of input and output noise
NYQUIST	Plotting of a Nyquist graph
07	Analysis of a mixed-mode circuit
OPAMP1	Use of the three levels of opamps
OPT1	Using the Optimizer to maximize power transfer
OPT2	Using the Optimizer to maximize low frequency gain
OPT3	Using the Optimizer to design matching networks
OPT4	Using the Optimizer in curve fitting
OSC1	Use of the Schmitt macro in an oscillator
P1	Use of the Laplace table source for a RC network
PERF1	Demonstrates the use of performance plots
PERF2	Demonstrates the use of performance plots
PLA2	Use of a PLA subcircuit as an equality comparator
PLA3	Use of the PLA digital primitive
POTDEMO	Use of the pot macro
PRINT	Use of the print preview for the schematic
PRLC	Analysis of a simple passive network
PSK2	Use of the PSK modulator macro
RCA3040	Analysis of a RCA3040 component
RELAY	Using the relay models
RISE	Use of Monte Carlo routines for rise times
S_2FLY_CM	Two-Switch Flyback Converter
S_2FOR_CM	Two-Switch Forward Converter
S_BOOST_CM	Boost Current Mode Converter
S_BOOST_VM	Boost Voltage Mode Converter
S_BUCK_CM	Buck Current Mode Converter
S_BUCK_SYN	Synchronous Buck Voltage Mode Converter
S_BUCK_SYN2	Synchronous Buck Current Mode Converter
S_BUCK_VM	Buck Voltage Mode Converter Converter
S_BUCKBOOST_CM	A Buck-Boost Current Mode Converter
S_BUCKBOOST_VM	M Buck-Boost Voltage Mode Converter

Flyback Current Mode Converter
Flyback Voltage Mode Converter
Forward Current Mode Converter
Forward Voltage Mode Converter
Full Bridge Current Mode Converter
Full Bridge Voltage Mode Converter
Full Bridge with XFMR Current Mode Converter
Half Bridge Current Mode Converter
Half Bridge Voltage Mode Converter
Half Bridge with XFMR Current Mode Converter
NCP1200 Converter
Push-Pull Current Mode Converter
Push-Pull Voltage Mode Converter
Use of the sample and hold component.
Use of the Smith chart
Use of the spark-gap macro
Use of the digital stimulus generators
Use of the digital stimulus generators
Use of a Stim generator in counting from 0 to F
Use of the INCR command in a Stim generator
Use of the random characters in a Stim generator
Use of an analog subcircuit
Adding subcircuits to the library
Use of the three types of the Switch component
Analysis of a mechanical system
Use of behavioral modeling components
Use of nonlinear table sources
Use of the Put, Triac, and SCR macros
Analysis of a SCR phase control
Use of transmission line and plotting line variables
AC simulation of a transmission line
Plotting the input small signal impedance
Use of the three methods of implementing a transformer
Use of mixed mode analysis
Vacuum tube amplifier
Vacuum tube circuit

UA709	Analysis of a UA709 opamp
UA723_REG	Using the UA723 model
UA741	Analysis of a UA741 opamp
USER	Use of the User source
USER2	Use of multiple User sources
XTAL1	Use of the crystal macro
ZDOMAIN	Use of the Z transform source

5.2. SPICE ファイル

(ファイル名)	(内容)
ASTABLE.CKT	Analysis of a SPICE circuit
CHOKE.CKT	SPICE equivalent of CHOKE
ECLGATE.CKT	SPICE equivalent of ECLGATE
PLA1.CKT	Use of a PLA subcircuit in a SPICE file
PLA2.CKT	The PLA subcircuit that is used in PLA2
RCA3040.CKT	SPICE equivalent of RCA3040
RTLINV.CKT	Analysis of a SPICE equivalent inverter
SCHMITT.CKT	Analysis of a SPICE Schmitt trigger
TTLINV.CKT	SPICE analysis of a TTL inverter
UA709.CKT	SPICE equivalent of UA709
UA741.CKT	SPICE equivalent of UA741

6. 参考文献

6.1. Micro-Cap 7 の使用方法に関するもの

製品に付属するもの

「Micro-Cap 7 User's Guide」(英語、約 254 ページ、著: Spectrum Software)

「Micro-Cap 7 Reference Manual」(英語、約 712 ページ、著: Spectrum Software)

「Micro-Cap 7 セットアップの手引き」(日本語、約 10 ページ、著: 東陽テクニカ)

現在準備中のもの

2002年2月現在、日本語訳を準備中です。完成次第、製品版ユーザの方へ送付させていただきます。

「Micro-Cap 7 ユーザーズガイド」

「Micro-Cap 7 リファレンスマニュアル」

市販されているもの

「トランジスタ技術 SPECIAL No.56 電子回路シミュレータ活用マニュアル」

「トランジスタ技術 SPECIAL No.62 電子回路シミュレータの本格活用法」

6.2. 半導体部品のモデリング

SPICE - Practical Device Modeling

著: Ron Kielkowski、出版: McGraw Hill 1995. ISBN# 0-07-911524-1

"reasonable"な半導体モデルを作成する方法について解説した良書です。

Semiconductor Device Modeling with SPICE

著: Paolo Antognetti, and Giuseppe Massobrio、出版: McGraw-Hill, 1988 SPICEの部品モデルに関するリファレンス的書籍です。

6.3. その他

Switch-Mode Power Supply SPICE Simulation Cookbook

著: Christophe Basso、出版: McGraw-Hill, 2001

SPICE でスイッチング電源をシミュレーションするための解説書です。Micro-Cap 7 のサ ンプル回路ディレクトリ(C:¥MC7¥DATA)には、この本で解説されている回路を多数収録 しております。